Tumor Hypoxia at the Molecular, Cellular, and Patient Level

Ted Graves (eg Graves@stanford.edu) May 19, 2014
• Tumor oxygenation
• The hypoxic tumor phenotype
• Molecular and cellular effects of hypoxia
• Integrative approaches to studying tumor hypoxia
 • Molecular imaging
 • Computational models
Tumor Hypoxia

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Tumor Hypoxia

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Tumor

100-180 µm

Necrosis

Stroma

Hypoxic

Tumor

100-180 µm

Necrosis

Stroma
Tumor Vasculature

Colon Subcutis Skeletal Muscle

Colon Carcinoma Melanoma Sarcoma
Vasculature and Hypoxia

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Normal

Tumor

Temporary Occlusion

Hypoxia

AV Shunt

Blind Ends

Break in Vessel Walls
Chronic Hypoxia

Hypoxia (EF5)

Blood vessels (CD31)

Glioma
Acute Hypoxia

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Hoechst 33342 → 20 minutes → DiOC7 → Sacrifice
Tumor Hypoxia

Tumor oxygenation

- Hypoxic phenotype
- Molecular effects
- Imaging
- Modeling
- Summary

Table 1 | Oxygenation of Tumours and the Surrounding Normal Tissue

<table>
<thead>
<tr>
<th>Tumour Type</th>
<th>Median Tumour pO$_2$ * (Number of Patients)</th>
<th>Median Normal pO$_2$ * (Number of Patients)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glioblastoma</td>
<td>4.9 (10)</td>
<td>ND</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>5.6 (14)</td>
<td>ND</td>
<td>129</td>
</tr>
<tr>
<td>Head and neck carcinoma</td>
<td>12.2 (30)</td>
<td>40.0 (14)</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>14.7 (23)</td>
<td>43.8 (30)</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>14.6 (65)</td>
<td>51.2 (65)</td>
<td>132</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>7.5 (17)</td>
<td>38.5 (17)</td>
<td>Q. Le (personal communication)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>10.0 (15)</td>
<td>ND</td>
<td>133</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>2.7 (7)</td>
<td>51.6 (7)</td>
<td>134</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>5.0 (8)</td>
<td>51 (8)</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>5.0 (74)</td>
<td>ND</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>3 (86)</td>
<td>ND</td>
<td>137</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>2.4 (59)</td>
<td>30.0 (59)</td>
<td>138</td>
</tr>
<tr>
<td>Soft-tissue sarcoma</td>
<td>6.2 (34)</td>
<td>ND</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>18 (22)</td>
<td>ND</td>
<td>140</td>
</tr>
</tbody>
</table>

*pO$_2$ measured in mmHg. Measurements were made using a commercially available oxygen electrode (the ‘Eppendorf’ electrode). The values shown are the median of the median values for each patient. ND, not determined; pO$_2$, oxygen partial pressure.

Hypoxic cancers exhibit:

- Resistance to radiotherapy
 - Oxygen dependence of DNA damage
- Resistance to chemotherapy
 - Poor drug delivery
 - Decreased cell proliferation
- Aggressive phenotype
- Genomic instability
- Reduced apoptosis
- Increased metastasis

L.H. Gray et al., Brit. J. Cancer, 1953
Hypoxia and Proliferation

Labeled with pimonidazole

Labeled with PCNA

J.A. Raleigh et al., Acta Oncol., 1995
Cells exposed To Hypoxia

Lung metastasis

Table I. Metastatic potential of oxic vs hypoxic tumor cells

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Treatment</th>
<th>Metastatic Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHT Fibrosarcoma</td>
<td>oxic</td>
<td>1.2 X 10^-3</td>
</tr>
<tr>
<td>KHT Fibrosarcoma</td>
<td>hypoxic</td>
<td>1.7 X 10^-2</td>
</tr>
<tr>
<td>B16 Melanoma</td>
<td>oxic</td>
<td>5.5 X 10^-4</td>
</tr>
<tr>
<td></td>
<td>hypoxic</td>
<td>5.0 X 10^-3</td>
</tr>
<tr>
<td>SSCVII</td>
<td>oxic</td>
<td>5.6 X 10^-4</td>
</tr>
<tr>
<td></td>
<td>hypoxic</td>
<td>3.1 X 10^-3</td>
</tr>
</tbody>
</table>
Hypoxia and Outcome

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Head and neck cancer

Prostate cancer

D.M. Brizel et al., Radiother. Oncol., 1999

B. Movsas et al., Urology, 2002
Hypoxia and Protein Synthesis

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Hypoxia coordinates the simultaneous induction and repression of specific sets of genes.
• Hypoxia regulates about 1.5% of the genes in the genome

• The transcription factors HIF-1, Egr, Jun, NF-κB, and p53 are all hypoxia-responsive.
HIF-1 is an oxygen-sensitive transcription factor that is upregulated in a number of tumors.
Regulation of HIF-1

Prolyl Hydroxylation of HIF1α

\[
\text{PHD2} + \text{Fe}^{2+} + 2\text{OG} + \text{O}_2 + \text{Asc} \leftrightarrow \text{PHD2} \cdot \text{Fe}^{2+} \cdot 2\text{OG} \cdot \text{O}_2 \cdot \text{Asc} \rightarrow \text{PHD2} + \text{CO}_2 + \text{SC}
\]

VHL-Initiated Degradation

\[
\text{HIF1}_\alpha_{\text{hydroxylated}} + \text{VHL} \cdot \text{Elongin} \cdot \text{Elongin} \leftrightarrow \text{HIF1}_\alpha_{\text{hydroxylated}} \cdot \text{VHL} \cdot \text{Elongin} \cdot \text{Elongin} \rightarrow \text{HIF1}_\alpha_{\text{Degradation~Products}}
\]

Iron Oxidation & Reduction

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^+ + \text{OH}^-
\]

\[
4\text{Fe}^{3+} + 2\text{Asc} + \text{O}_2 \rightarrow 4\text{Fe}^{2+} + 2\text{dehydroAsc} + 2\text{H}_2\text{O}
\]
HIF-1 and Outcome

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Nasopharyngeal carcinoma

Lung cancer

Breast cancer

S.J. Kim et al., Lung Cancer, 2005

J. Dales et al., Int. J. Cancer, 2005
Molecular imaging is an inherently integrative method with a variety of applications to systems biology:

- Imaging is non-invasive and conducive to longitudinal measurement
- A variety of imaging approaches exist to interrogate a range of molecular, cellular, and physiologic processes
- Probe-based imaging relies on the dynamic distribution and uptake of a contrast molecule and thus reports on multiple physiologic parameters
FDG PET signal is dependent on:

- Vascular delivery
- Cell number
- GLUT expression
- Hexokinase expression

Reaction Diagram

- Hexokinase
- Phosphohexose isomerase
- Glucose-6-phosphatase Slow!!!

Chemical Formulas

- Glucose-6-P
- Phosphoenolpyruvate
- Pyruvate

FDG PET

Tumor oxygenation • Hypoxic phenotype • Molecular effects • **Imaging** • Modeling • Summary
Hypoxia and FDG

Human head/neck cancer cell lines

In vitro uptake assay

$r=0.24$ for all tumors ($n=49$)

$r=0.41$ ($p=0.04$) for head/neck ($n=26$)
Fig. 2. Hematoxylin-eosin images (a, d, g), composite images (b, e, h) showing Hoechst 33342 (blood flow) in blue, pimonidazole stain (hypoxia) in green, and bromodeoxyuridine (cell proliferation) in red, and 18F-FDG autoradiograms (c, f, i) for each of the three tumors.
2-nitroimidazole uptake is dependent on:

- Vascular delivery
- Cell number
- Reductase expression
- Oxygen
Multimodal Imaging

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Graves et al., Clin Cancer Res, 2010
Hypoxia PET and Prognosis

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

18F-Fluoromisonidazole (FMISO)

Variation in Mean EF5 T/M in Different Cell Line Derived Subcutaneous Tumors

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>T/M Value</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT29</td>
<td>1.2</td>
<td>(n=9)</td>
</tr>
<tr>
<td>A549</td>
<td>1.5</td>
<td>(n=9)</td>
</tr>
<tr>
<td>RKO</td>
<td>2.0</td>
<td>(n=7)</td>
</tr>
<tr>
<td>22B</td>
<td>2.5</td>
<td>(n=10)</td>
</tr>
<tr>
<td>FaDu</td>
<td>3.0</td>
<td>(n=10)</td>
</tr>
<tr>
<td>SAS</td>
<td>2.8</td>
<td>(n=6)</td>
</tr>
<tr>
<td>SAS</td>
<td>3.2</td>
<td>(n=7)</td>
</tr>
</tbody>
</table>

FAZA

Tumor oxygenation
- Hypoxic phenotype
- Molecular effects
- Imaging
- Modeling
- Summary
Hypoxia Imaging for Prognosis?

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

R.S. Ali et al., in preparation
Effect of Total Dose on Post-Tx Response
EF5 and RT Response

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

1 x 10Gy

1 x 40Gy

Normalised Post-RT Volume vs. Days Post Treatment

- T/M < 2.5
- T/M > 2.5

p < 0.05
EF5 and RT Response

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

2 x 5Gy

Days Post Treatment

Normalised Post-RT Volume

Days Post Treatment

Normalised Post-RT Volume

2 x 10Gy

T/M < 2.5

T/M > 2.5

Days Post Treatment

Normalised Post-RT Volume

Days Post Treatment

Normalised Post-RT Volume

4 x 5Gy

T/M < 2.5

T/M > 2.5

Normalised Post-RT Volume

0 10 20 30 40 50 60

Days Post Treatment

2 x 10Gy

Normalised Post-RT Volume

0 10 20 30 40 50 60

Days Post Treatment

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary
Intertumoral Heterogeneity

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

T/M = 3.2

T/M = 3.3

Tumor Volume (mm³)

Days Post Radiation
Intertumoral Heterogeneity

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

T/M = 2.2

T/M = 2.4
Models of Hypoxia

Molecular and cellular-level models

* Molecular interaction maps

* Chemical-kinetic models
 Nguyen et al., J. Cell Sci., 2013

* Genetic models
 Yu et al., PLoS Comp. Biol., 2007

Tissue-level models

* Radiobiological simulations
 Stamatakos et al., Proc. IEEE, 2002
HIF-1 Modeling

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Distinct reactive oxygen species conditions can explain the difference in HIF-1 signaling and cellular response in cancer and ischemia.

Radiobiological Modeling

G. Stamatakos et al., Proc. IEEE, 2002
Image-Based Modeling

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

CT

18FDG-PET

MRI

In vitro/molecular

Computational

In vivo/translational

Feed info

Prediction

Feed info

Prediction
Image-Based Modeling

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Image-Based Modeling

Tumor oxygenation • Hypoxic phenotype • Molecular effects • Imaging • Modeling • Summary

Conclusions

• Lack of oxygen in cancer is a long-recognized and studied aspect of the tumor microenvironment

• Hypoxia drives a variety of phenotypic changes in cancer through both direct and indirect mechanisms

• Transcription factors, most notably HIFs, act as cellular oxygen sensors to mediate a molecular response to the absence of oxygen

• Imaging methods can shed light on hypoxia at the cellular to the patient level, but interpretation and prediction based on these images remains challenging

• Quantitative modeling techniques have been applied to understand hypoxia at the molecular, cellular, and patient levels

Points to ponder while reading:

1. What are the rules on which the model is predicated, and how generalizable is the model as a whole?
2. How was the model validated?
3. What actionable scientific or preclinical hypotheses or information was obtained through the modeling process?